Disappearing Rio Grande

New? Start here.

Why Follow the Rio Grande

by Colin McDonald | Feb. 11, 2015

The Rio Grande is disappearing. Demand for water is growing as snow packs shrink, rain patterns shift and average temperatures rise faster than they ever have in the past 11,000 years.

Read more

Goodbye Colorado, Day 20

Some newer residents along the Rio Grande. Photo by: Colin McDonald

This is my last day in Colorado.  I spent it paddling through the geologic chaos of basalt flows that once formed the dam that created Lake Alamosa.

The Rio Grande eventually broke through that wall of rock and scoured out the Rio Grande Gorge. It was greatly helped by the fact that the gorge is where one of the greatest rifts in the world has formed. The continent is actually ripping apart at this point. It is the opposite of a mountain range being formed by two tectonic plates smashing into each other.

In the more recent past, a century ago, the river below here would have been terrifying. So would the river above. Back then, the river was more than 250 feet wide and 10 feet deep and a ferry was needed to cross it, according to the historical sign at the second-to-last bridge before the state line. Trying to stay on top of all that water rushing through an ever-narrowing canyon would have required more skill than I have.

But now, if you are more than five feet tall, you can easily wade it almost anywhere near here and the rapids of the gorge are considered low class V.  That's still above my skill level and a local guide is going to help us get through safely.

The bizarre nature of the landscape, with the high banks of the river’s old channel still visible, balancing rocks and short, sporadic canyons, is enhanced by the growing collection of abandoned buildings.   

On the west side of the Rio Grande is land controlled by the Bureau of Land Management. Scattered across it are the remains of buildings dating back 50 to 100 years when farms dotted the region. The grandparents of Brian Bechaver, the game warden who gave me a tour of the area yesterday, used to run a vegetable farm tucked into those hills.

On the other side of the valley is a subdivision that covers hundreds of square miles with only a scattering of homes.  The advertisements for it boasted cheap land in a Colorado paradise near the Rio Grande.  They did not mention that there was no water or power and that 20 below zero with winds of up to 50 mph are common January through March.

Bechaver said people come out in the summer, live in a trailer while they build a little home, and in less than five years they are almost always gone.

“The homes just dissolve away back into the desert,” he said.

Nothing lasts out here.

To comment on this post or ask a question, please visit the expedition's Facebook page.

23.0
Air temperature (°C)
0.0
Conductivity (µS/cm)
0.75
Depth of Measurement (meters)
5.6
Dissolved oxygen (mg/L)
0
E. coli colonies per 100 ml
0.0
pH level
0.4
Secchi disk transparency (meters)
22.0
Water temperature (°C)

What do these numbers mean?

As they travel, Colin and Erich are taking water samples for the following periodic water quality tests. In partnership with The Meadows Center for Water and the Environment’s Texas Stream Team Program at Texas State University, the results will be added to a public database it helps maintain for research and monitoring water quality.

Air/Water Temperature
Temperature impacts everything from the amount of oxygen in the water and the metabolism of aquatic species to how easily compounds dissolve. Most species can tolerate slow seasonal changes but can go into thermal stress or shock when temperatures change by more than one or two degrees Celsius in 24 hours.
pH Level
The pH scale measures water’s acidity and runs on a logarithmic scale from 1.0 to 14.0, with 7.0 considered neutral. Anything below 7 is acidic and anything above is basic. A pH range of 6.5 to 8.2 is optimal for most organisms.
Dissolved Oxygen
Oxygen is just as vital for life below the surface as it is above. The amount needed varies according to species and stage of life, but generally 5.0 to 6.0 milligrams per liter is required for growth and activity. Levels bellow 3.0 mg/L are stressful to most fish species and levels below 2.0 mg/L for an extended period of time will cause fish kills.
Conductivity
Conductivity levels depend mainly on how easily the rocks and soils a stream passes through dissolve. For example, high levels of conductivity are often found with water that passes through limestone and gypsum because it will pick up the calcium, carbonate and sulfate from those rock formations. However, discharges into a water body, such as a failing sewage system, can also raise the conductivity because of the presence of chloride, phosphate and nitrate.
Water Clarity
Turbid water can come from high levels of sediment or plankton. Both will block sunlight to aquatic plants and the sediments can carry pollution such as nutrients and pesticides. Low levels of turbidity may indicate a healthy and well-functioning ecosystem. High levels can be an indicator of runoff from eroding soils or blooms of microscopic plankton due to high levels of nutrients.
E. coli
E. coli bacteria are found in the colon of warm-blooded animals. If the pathogen is found in water it’s an indicator that fecal mater from humans, pets, livestock or wildlife is also present and may pose a public health threat. For drinking water the standard is to have no E. coli. But almost all non-treated water has some E. coli in it and at low levels it does not represent a substantial health threat to those who swim or wade in it. The Environmental Protection Agency has set the water quality standard for these types of activities at 126 colony forming units per 100 mL.
Secchi disk transparency
The Secchi disk is a plain white, circular disk used to measure water transparency in bodies of water. It is lowered into the water of a lake or other water body until it can be no longer seen. This depth of disappearance, called the Secchi disk transparency, is a conventional measure of the transparency of the water.

While making his way to the Gulf of Mexico, Colin will be periodically activating a device that uses satellite technology to share his current location. Use this map to see where he traveled on this day.

Check-In Time of Check-In (CST) Latitude Longitude
#1 4:15 p.m. 37.08372 -105.75386
#2 4:23 p.m. 37.07837 -105.75714
#3 5:18 p.m. 37.04253 -105.77083
#4 5:44 p.m. 37.02617 -105.76015

About

To report on and understand the haphazard irrigation system the Rio Grande has become and the changes it is going through, Colin decided the best approach would be to travel the length of the Rio Grande by foot and small boat.

He knew it would give him a unique perspective on a river that few understand. It did require many long days of moving slowly and camping on muddy riverbanks, but Colin likes that sort of thing.

The benefit was it provided access to people who wanted to share their stories and experiences with the Rio Grande. Via Facebook and chance encounters, Colin made instant friends who opened their homes. They provided help from loaning their trucks to their cell phone contact lists to help tell the story of the Rio Grande.

The trip would not have been possible without their help, along with the dedicated assistance of David Lozano, Jason Jones and Daniel Dibona, who drove thousands of miles to get people and boats in place.

Contributors

Reporter
Photojournalist
Jessica Lutz
Photojournalist
Mike Kane
Photojournalist
Project Editor
Barbara Hosler
Copy Editor
News Apps Team Lead | @rdmurphy
Google Journalism Fellow | @jessihamel
Web Designer | @been_hussln
Editor | @ATXjj